Using Machine Learning to Estimate Global PM2.5 for Environmental Health Studies
نویسندگان
چکیده
With the increasing awareness of health impacts of particulate matter, there is a growing need to comprehend the spatial and temporal variations of the global abundance of ground-level airborne particulate matter (PM2.5). Here we use a suite of remote sensing and meteorological data products together with ground based observations of PM2.5 from 8,329 measurement sites in 55 countries taken between 1997 and 2014 to train a machine learning algorithm to estimate the daily distributions of PM2.5 from 1997 to the present. We demonstrate that the new PM2.5 data product can reliably represent global observations of PM2.5 for epidemiological studies. An analysis of Baltimore schizophrenia emergency room admissions is presented in terms of the levels of ambient pollution. PM2.5 appears to have an impact on some aspects of mental health.
منابع مشابه
Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملEvaluating machine learning methods and satellite images to estimate combined climatic indices
The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...
متن کاملEstimation of Tehran's particulate matter 2.5 micrometers or less in diameter (PM2.5) health effects, using BenMAP-CE
Background and Objective: Despite the significant improve in air quality in Tehran in 2018 and reducing the average concentration of most pollutants, compared to previous years, air quality is still far from the WHO air quality guideline level and national air quality standards. The purpose of this study was to estimate the effects of air pollution on health in Tehran by considering the spatial...
متن کاملEstimating the global abundance of ground level presence of particulate matter (PM2.5).
With the increasing awareness of the health impacts of particulate matter, there is a growing need to comprehend the spatial and temporal variations of the global abundance of ground level airborne particulate matter with a diameter of 2.5 microns or less (PM2.5). Here we use a suite of remote sensing and meteorological data products together with ground-based observations of particulate matter...
متن کامل